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Abstract. This study presents a numerical investigation of convective heat transfer in a
rectangular porous cavity using the generalized model with uniform porosity based on the
Brinkman and Forchheimer models in Navier-Stokes equations which are applied to an
interval involving Darcian and non-Darcian regimes. Results are presented through
temperature and vertical velocity profiles as well as the average Nusselt number calculated in
the vertical walls of the cavity. These results were compared with other numerical studies ,
verifying a good agreement. It was also proposed a correlation in order to calculate the
average Nusselt number at five dimensionless parameters, such as: aspect ratio, Rayleigh
number, Darcy number, Prandtl number and the porosity. It was observed a discrepancy
about 30% in relation to the simulated results.

Key–words: Natural convection, porous medium, uniform porosity, Darcian and non-Darcian
regimes.

1. INTRODUCTION

In the last three decades the analysis of the thermal field in a porous medium has attracted
a great deal of attention because of the necessity to know the thermal-hydrodynamic behavior
which is involved in geophysical systems, storage and drying of grains, oil reservoir
engineering, besides thermal insulation projects. The wide range of researches that were
developed in the heat transfer area in a porous medium, used fundamentally the approximations
based on Darcy’s law. Nevertheless, when the porous medium permeability is high, Darcy’s
model doesn’t present satisfactory results when compared with experimental data. This
discrepancy in theoretical results with experimental data was initially analyzed by Cheng
(1978), in order to investigate the thermal behavior and its applications in geothermal systems.



By virtue of this divergence, several efforts were accomplished to include inertial and viscous
terms in momentum equations with the purpose of examining its effects, to develop a
mathematical model which should be reasonably accurate and in which experimental data are
corroborated. Both inertial and viscous terms were added forming , thus, the non-Darcian
model that lacked of a formalism which could legitimate it. Finally, Slattery (1978) solved the
problem through the development of medium equations starting from mechanical of continuous
equations, developing a theorem to associate averages of gradients and gradients of averages.
As a result, the Darcy’s model , which was perfected by Brinkman and Forchheimer, and more
accurate models proposed by Vafai & Tien (1981), appeared using the Local Volume
Averaging Technique given by Nithiarasu et al. (1979) , that are originated from a balance of
properties in a control volume. Although these more complete models originate themselves
from different principles, they are equivalent, because they result in the same momentum
equations, including the Forchheimer and Brinkman terms. Medeiros et al. (1998) investigated
numerically the heat transfer by natural convection, in a quadratic porous and saturated cavity,
based on non- Darcian regime, using the generalized model with the Brinkman and
Forchheimer terms in the Navier-Stokes equations, considering an uniform porosity and then
they conclude that the applied method agrees very well with those methods referred in
literature.

This research intends to validate the mathematical model as well as the numerical method
that has been used in a rectangular cavity at several aspect ratio and to present results through
temperature and velocity profiles, and the average Nusselt number (which is calculated in the
vertical walls of the cavity).It was also proposed a correlation in order to calculate the above-
mentioned average Nusselt number, considering uniform porosity , in function of five
dimensionless parameters: aspect ratio, Rayleigh number, Darcy number, Prandtl number and
the porosity.

2. MATHEMATICAL FORMULATION

The problem in relation to the heat transfer by  natural convection in a porous rectangular
cavity, as shown in Fig. 1, was numerically simulated using the generalized model based on the
Brinkman’s and Forchheimer’s terms, in the Navier-Stokes equations proposed by Nithiarasu
et al. (1997). This model is obtained through the balance of properties assuming, an isotropic
homogeneous and saturated porous medium by an incompressible fluid, two-dimensional  and
laminar flow, use of Boussinesq approach in the modeling of the buoyancy term, fluid and the
solid matrix in local thermal equilibrium, and there is not any change of the phase of the fluid.

Figure 1 – Geometry and boundary conditions of the problem



The system of equations for a formulation of the problem in Cartesian coordinates can be
written as:
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where ε and K are respectively the porosity and the absolute permeability related to the porous
medium and ρf, µf, cpf, and βf  are the specific mass, viscosity, specific heat at constant pressure
and the thermal expansion coefficient of the fluid. In addition, km, the thermal conductivity of
the saturated porous medium, is mathematical function of the porosity medium and also of the
thermal conductivity ratio between the solid and the liquid. While  u, v, p, T and g are vector
velocity Cartesian components ,the medium pressure, the temperature and the gravity
acceleration, respectively. The last two terms of Eqs. (2) and (3) represent the Brinkman and
Forchheimer terms.

The equations (1)-(4) can be non-dimensioned using the following parameters:
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where αf, kf, Rk, Ra, Da, Pr, σ and A are respectively the thermal diffusivity of the fluid, the
thermal conductivity of the fluid, the conductivity ration between the medium and the liquid
phase, Rayleigh number, Darcy number, Prandlt number, the thermal capacity ratio and the
aspect ratio of cavity. In the present work, the thermal properties of the fluid-porous matrix
were considered unitary ((σ =1, km = kf), that is to say the effects of the conductivity ratio as
well as the thermal capacity ratio were not taken into consideration. Using the dimensionless
parameters of Equations (5) – (6) , the Eqs. (1)-(4) formed the following set of dimensionless
equations:
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In equations (7)-(10), the following dimensionless boundary conditions were employed:

AYand0Yat0
Y

VU ===
∂

θ∂== (11)

1Xand0Xat0VU ====  (12)

1Xat0and0Xat1 ==θ==θ  (13)

3. NUMERICAL PROCEDURE

The proposed problem in this research forms a system of nonlinear elliptical differential
equations composed by the continuity equation, momentum equations in directions x and y and
finally the energy equation. These equations were discretized based on the Finite Volume
Method given by Patankar (1980) and Maliska (1995), using the staggered grid of variables. In
this grid, the pressure and temperature are kept in the center of the control volume, while the
control volumes for the velocities are located in the faces of the volumes of pressure. In order
to evaluate the property and its gradients in the surface of each control volume, it was used the
interpolation scheme  WUDS (Weighted Upstream Differencing Scheme). On the other hand,
to solve the problem of velocity-pressure coupling, it was used the PRIME( Pressure Implicit
Momentum Explicit), Maliska (1995).

The iterative cycle, to solve the velocity-pressure coupling, obeyed the following stages: a)
Estimating the U, V and  θ variables. b) Calculating the momentum equations coefficients. c)
Calculating the snwe V̂eV̂,Û,Û  velocities in all of the interfaces of the elementary volume to the

pressure. These velocities are not obtained from the solution of linear systems, but throughout
the momentum equation and they contain all of the terms except for the pressure ones. d)
Solving the linear system at P. e) Correcting the velocities, by using the correction equations,
so that these equations can satisfy the mass conservation. f) Solving the linear system at θ  and
after returning to the item b), iterating until the convergence.



In order to find a solution to the P and θ linear systems, GMRES, given by Saad et al
(1986),was considered. It is also preconditioned on the right with an incomplete factoring
ILU(1) Marcondes et al(1995). As a criterion of stopping in the solution of these linear
systems, it was established that ||r||/||r0||<10-4, where ||r|| is the second residue vectorial pattern
and ||r0|| is the second initial residue vectorial pattern. In fact, one of the reasons for employing
the GMRES approach is due to the slow convergence or the global non-convergence of the
problem. Because of this, TDMA was used to solve these above-mentioned linear systems.

As a global convergence criterion, it was proposed the following approach in U and V,
given by Maliska (1995): ( ) 5

minmax
n1n

i 10
i

−+ ≤φ−φφ−φ . Where|φmax-φmin| represents the

maximum variation in U or V which was achieved in the –iteration n. When in some point, this
equation was not verified , a new iteration was requested.

In this paper, it was used a mesh with exponential variation close to the walls, where there
are more accentuated gradients. For more detailed information, see Anderson et al.(1984).A
staggered grid of variables and the computational mesh used in the simulations are presented in
Fig. 2. A mesh refinement study was accomplished and it was found independent results of the
mesh from 61x61 volumes.

  

Figure 2 – Grid of variables and computational mesh (61 x 61)

4. RESULTS AND DISCUSSIONS

Initially , the generalized model was tested for being applied in a spectrum interval,
involving from the Darcian model (Da= 10-7) until the non-Darcian regime (Da= 10-6). The
modified Rayleigh number (Ram=RaxDa) from 10 to 1000, in the Darcian regime, and from 100
to 5000 in the non-Darcian regime. In fact, this difference between the two intervals above-
mentioned is merely to compare with other researches. For the whole cases, the following
values were considered for the dimensionless ones: : Pr =1 and Pr=0,01, σ =1, Rk = 1, 1 ≤ A ≤
10 and ε = 0,4, 0,6 e 0,9.

The average Nusselt number, HNu , in the cold and hot walls, was calculated by:
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4.1 Numerical Validation

The table 1 shows the average Nusselt number on the left wall at Darcian regime in
comparison to other mentioned researches in literature. The Walker & Homsy (1978) works
and Trevisan & Bejan(1986) studies employed the Darcy’s model. On the other hand,
Nithiarasu et al. (1996) used the generalized model based on Brinkman & Forchhemier terms
and Lauriat and Prasad (1989) made use of a similar model to the above-mentioned
generalized model. It is interesting to note that with exception of Trevisan & Bejan study
(1996), at Ram=1000, the results, that were obtained  in this present research , show a good
agreement in relation to the results which were achieved through different physical model, as
shown in Tab. 1:

Table 1 – A comparison of the model in Darcian regime (Da=10-7,Pr=1,A=1 and ε = 0,4)

HNu  left face
Ram Walker &

Homsy (1978)
Lauriat &

Prasad (1989)
Trevisan &

Bejan (1986)
Nithiarasu et

al. (1996)
Present
research

10 - 1,07 - 1,08 1,08
50 1,98 - 2,02 1,96 1,98

100 3,09 3,09 3,27 3,02 3,10
500 8,40 - - 8,38 8,89
1000 12,49 13,41 18,38 12,51 13,38

Table 2 presents the average Nusselt number on the left wall at non-Darcian approach in
comparison to Nithiarasu et al. (1997). Note that there is also a good agreement between the
results in a non-Darcian regime, for different Darcy’s values, and the porosity. In spite of not
representing in a appropriate way a porous medium, the ε= 0,9 case was simulated only to
effect of validation of the results with those studied widely in literature.

Tabela 2 - A comparison of the model in non-Darcian regime (Pr=1 and A=1 ).

HNu  left face
ε=0,4 ε=0,6 ε=0,9Ram Da

Nithiarasu
et al. (1997)

Present
research

Nithiarasu et
al. (1997)

Present
research

Nithiarasu et
al. (1997)

Present
research

100 10-6 2,97 3,05 3,00 3,07 3,00 3,08
1000 10-6 11,46 12,10 11,79 12,57 12,01 12,90
5000 10-6 23,09 24,74 25,37 26,77 26,91 28,49
100 10-4 2,55 2,60 2,72 2,70 2,74 2,79

1000 10-4 7,81 7,76 8,18 8,56 9,20 9,31
5000 10-4 13,82 13,60 15,57 15,34 16,77 17,14
100 10-2 1,41 1,36 1,53 1,49 1,64 1,63

1000 10-2 2,98 2,99 3,56 3,44 3,91 3,92
5000 10-2 4,99 4,99 5,74 5,76 6,70 6,59

4.2 Analysis of Results

Figure 3 shows the temperature and vertical velocities profiles, respectively in a average
horizontal line of the cavity, at Ram=1000, and it still shows that the Darcy regime varies
from 10-7 to10-2, and ε=0,4.It should be noted that for Da ≤ 10-4, the temperature profiles are



very similar. In these cases, the same thermal boundary layer occurs approximately near the
walls and the heat transfer in the central area of the cavity practically occurs by diffusion.
However, at Da=10-2, the thickne--ss of the thermal boundary layer is very different from the
others ones and it also happens a change in the central area. The  temperature profile has a
tendency to present the thermal inversion effect. In fact, the fluid, which is contained in the
cavity, transports energy from the hot wall to the cold one and it flows close to the walls, but
when the medium permeability increases, these fluid begins to interact in the process. On the
other hand, the thermal inversion happens because the flowing fluid in the bottom portion of
the cavity, by approaching to the hot wall, loses heat to the central area of the cavity, and this
makes the temperature increases. The important point to be noted here is that due to Pr=1,
the thickness of the thermal and kinetics boundary layers is approximately the same.
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Figure 3 – Temperature and vertical velocity profiles in the averaging horizontal line at
Ram=1000, Pr=1,A=1 and ε = 0,4.

It is seen from figure 4 that the temperature and vertical velocities profiles in the averaging
horizontal line of the cavity for Da=10-7, at Ram varying from 100 to 5000 and  ε=0,4. At
Ram=100, the temperature approaches to a conductive behavior and at Ram ≥ 500, the profiles
are quite altered by the convection. Observe that practically the whole flow occurs near the
walls, whereas the whole fluid in the central area remains stagnant. Evidently, this happens due
to the high speed gradient close to the vertical walls. An abrupt variation of the velocities
profiles close to the walls is observed, showing thus, a similar situation in the sliding condition.

In figure 5, it can noted that the temperature and vertical velocities profiles respectively in
the averaging horizontal line of the cavity for Da=10-2 , at Ram varying from 100 to 5000 and
ε=0,4. It is observed a similar behavior to that described in the previous paragraph, however,
verifying the decrease of the velocity gradient close to the vertical walls, due to the increase of
medium permeability. In this case, it is interesting to note that the velocity gradients are plenty
of inferior to every simulated numbers Ram. It is still noticed the appearance of the thermal
inversion effect at Ram = 5000.

The figure 6 presents the average Nusselt number for aspect ratio (A) equals to 1,5 and
10, Prandtl number 0,01 and 1, and Da=10-6 and 10-2 in a interval Ram from 100 to 5000. It is
verified that the  aspect ratio increase or Prandtl decrease cause the average Nusselt number
increase through the cavity in both of studied cases.
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Figure 4 – Temperature and vertical velocity profiles in the average horizontal line at
Da=10-7, Pr=1,A=1 and ε = 0,4.
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4.3 Proposed correlation

In order to group the several simulated results presented in fig. (6), it was suggested a

correlation at ( )ε= Pr,,Da,Ra,AfNu H , which is defined as:

fedcb
H PrDaRaAaNu ε=  (15)

The domain that guided the simulations was the following: aspect ratio (1 ≤ A ≤ 10),
(5x106 ≤ Ra ≤ 5x109), Darcy (10-6 ≤ Da ≤ 10-4), Prandtl (Pr=0,01 e 1) and porosity (0,4 ≤ ε ≤
0,9). Thus, 264 simulations were accomplished at an interval Ram that is established from 500
to 5000. With the simulation values, it was obtained the following correlation for the average
Nusselt number in the cavity, for the overall analyzed domain:
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H PrDaRaA202.0Nu ε=  (16)

Figure 7 presents the simulated values versus Eq. (16), containing the overall above-
mentioned domain. A discrepancy is verified among the simulated results and results calculated
through Eq. (16), which is inferior at 30%.
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Figure 7 – correlation at Nusselt number, HNu  = f ( A, Ra, Da, Pr, ε)

5. CONCLUDING REMARKS

In this analyses , it was observed that the proposed problem using the generalized model
with uniform porosity obtained a good performance in relation to other researches. It was also
noted the influence of the permeability in the fluid flow and consequently in the heat transfer
rate, in the cavity through the temperature and vertical velocity profiles. It was proposed a
correlation for the average Nusselt number in function of five dimensionless parameters, such
as: aspect ratio, Rayleigh, Darcy and Prandtl numbers and the porosity. Thus, it was observed
a discrepancy about 30% among the simulated results and the established correlation. This can
be statistically attributed to the small number of simulated results, opposite to the number of so
many involved parameters or even to parameters that will be analyzed later on a scaling
analysis, in order to define the dominant parameters of the problem.
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